From 1 - 2 / 2
  • Seismic reflection mapping, geochemical analyses and petroleum systems modelling have increased our understanding of the highly prospective Mesoproterozoic and Paleoproterozoic source rocks across northern Australia, expanding the repertoire of exploration targets currently being exploited in Proterozoic petroleum systems. Data collected during the Exploring for the Future program have enabled us to redefine and increase the extent of regional petroleum systems, which will encourage additional interest and exploration activity in frontier regions. Here, we present a review of the Paleoproterozoic McArthur and Mesoproterozoic Urapungan petroleum supersystems, and the most up-to-date interpretation of burial and thermal history modelling in the greater McArthur Basin (including the Beetaloo Sub-basin), South Nicholson Basin and Isa Superbasin. We also present potential direct hydrocarbon indicators imaged in the 2017 South Nicholson Deep Crustal Seismic Survey that increase the attractiveness of this frontier region for hydrocarbon exploration activities. <b>Citation:</b> MacFarlane, S.K., Jarrett, A.J.M., Hall, L.S., Edwards, D., Palu, T.J., Close, D., Troup, A. and Henson, P., 2020. A regional perspective of the Paleo- and Mesoproterozoic petroleum systems of northern Australia. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • A key challenge in exploring Australian onshore sedimentary basins is limited seismic data coverage. Consequently, well logs are often the main datasets that can be used to understand the subsurface geology. The primary aim of this study was to develop a methodology for visualising the three-dimensional (3D) tectonostratigraphic architecture of sedimentary basins using well data, which can then be used to quickly screen areas warranting more detailed studies of resource potential. This project has developed a workflow that generates 3D well correlations using sequence stratigraphic well tops to visualise the regional structural and stratigraphic architecture of the Amadeus, Canning, Officer and Georgina basins in the Centralian Superbasin. Thirteen Neoproterozoic‒Paleozoic supersequence tops were interpreted in 134 wells. Three-dimensional well correlations provide an effective regional visualisation of the tectonostratigraphic architecture across the main depocentres. This study redefines the Centralian Superbasin as encompassing all western, northern and central Australian basins that had episodically interconnected depositional systems driven by regional subsidence during one or more regional tectonic events between the Neoproterozoic and middle Carboniferous. The Centralian Superbasin began to form during Neoproterozoic extension, and underwent several phases of partial or complete disconnection and subsequent reconnection of depositional systems during various regional tectonic events before final separation of depocentres at the culmination of the Alice Springs Orogeny. Regional 3D correlation diagrams have been generated to show the spatial distribution of these supersequences, which can be used to visualise the distribution of stratigraphic elements associated with petroleum, mineral and groundwater systems. <b>Citation: </b>Bradshaw, B., Khider, K., MacFarlane, S., Rollet, N., Carr, L. and Henson, P., 2020. Tectonostratigraphic evolution of the Centralian Superbasin (Australia) revealed by three-dimensional well correlations. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.